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1. Introduction

Hugo Wahlquist ancl I first met Jerzy  Plcbax’di  in 1967 in New York cluring  the
second Texas Conference, We rcmembm  still his (second) question to us: “rl’ell  me,

how clicl you guys get the disease?)’ Fascinaticm with the physics ancl mathematics

of gmcral  relativity is indcwcl  a disease, a chrcnlic  affair, with which marly  of us fed

privileged to have lmcm afflic.tcxl.  I am so very pleasecl  to be at this symposium, to

honor Professor Plcbafiski’s  life of ccmtributions  and associations in our wonderful
ficlci, and to jc)in with his c.cdlcagucs  iwlcl studcmts  in wishing him a xnc)st Happy

Birthday.

I will discuss two problems of immcmion,  of (curved) Riemannian  or pseudo-

Riemannian  manifolds seen as submanifolds  of higher dimensional flat manifolds

(Euclidean or ]>se~lclo-E~lcliclcall.) T1N2  first is classic, that of two-clinmnsional

spaces of constant negative curvature , immersed in orclinary  Euclidean 3-sl>acc;

by introducing intrinsic coordinates , arising from the immersion itself, the sine-

Gordon equation and original transformation of Bticklu]id  are fount{. The second
problem will be that of R.icci-flat  4-spaces, which are well known to be, locally at

least,  immersible in flat Euclidean spaces  c~f te~i dimensions. We will find the par-

tial differential equations of both these immersions to explicitly show their causal
property--the uniqueness of their il]tegration from Cauchy-Kowalcski  data set on

one dimensional and three  ciimcmicma]  slices, respectively.

The partial clifferential  equations of R.iemannian  immersion are inva.riantly  for-

mulated as exterior differential systems set on the orthogonal frame Lundle  over

the immersing space. Since in these cases the immersing spaces arc “~, three  and
—..—.—.
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ten dimensional, respectively, the bm]dles are in fact group spaces, 1S0(3) ancl

1S0( 10). 1S0(3) is six climensional,  the grcmp  of translations and rotations of flat

3-space Es. 1S0( 10) is 55 climcmsional,  tile group of trallslaticms  (10) ancl rotations

(45) of EIO. The Grtan-Maurer  structure equations of ISO(n)  invariantly  express

its Lie algebraic structure in terms of n ]eft.  (right )-inva-riant basis l-forms WP and

n(ll-1)/2 basis l-forms W; ( = –-w; in the ca.w of positive dcfhlite signature):

Wc will use this basis tc) set  the clifi’erential iclcals dcterlnining  the immersions.

2. Cartan-Klilder Theory

Cartan-Kidder  theory of (mall analytic) sets of partial differclltial  equations

considers closed exterior differential ideals  on spaces of combined depellclcmt  and

iudepenclcnt  variables, dimension n. The generic maximal integral manifolds of

an icleal--submanifolcls  on which, when pulled back, the ideal vanishes--- are the

solutions. If these are g-dimensicmal, any g basis 1- forms which, pulled hack or

restricted to them, still remain linearly independent can be chosen as giving suitable
indc]mndent variables; the n-g others then are dcnotccl as clependent,  satisfying the

associated partial clifferential  equatiolw. We have briefly summarized C~K theory

in several papersl; a rcccnt  cxcellcnt  mmlograph by Yang2 is hi,ghly recommexidecl.

Several diagnostic tests and teclmiqucs them clcscribecl  ancl justified will be of es-

sential use in the following.

First, given an exterior cliflerential  ideal I, it is important to recognize its

Cauchy characteristic vectors– vector  fields which, when ccmtractecl  with any form

ill I yield, again, a form in I. Their importance stems from the c)bscrvation  that a]l

of them must lie in the maximal integral manifolds (otherwise an integral manifold

of larger dirnensionality  could inmlcdiatcly  be constructed!) Cauchy characteristic

vectors thus give integral manifolds a fiber structure. The second essential cliagnos-

tic calculation is to find the <et of Cartan (ixltegcr)  characters s = {s0, sl, . . . . s~_l }.

These are in principal found from the ra]lks  c)f a ncstecl  sequence of linear homo-

geneous algebraic equations for the ccm~poncnts  of a set of vectors V1, V2, . . . . . . Vg

that, from a ge]lmic point, can be integrated to span the integral manifold that is

a g- climensional  solution. The genus g is in fact determined from the criteria that

so +s] + ,,.. +sg_~<?l–g while no further indcpcmdent  vector V~+l exists. If the

equality holds there are no arbitrary functimls in the final construction---a well-set
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Cauchy-Kowaleski  i]ltcgration-af  a g-dimensional solution from a submanifold  of

lower  dimension on which initial data are set, The last non-zero integer in the set

s gives that dimension, and the nuxnl>cr of initial d,ata a.s fmlctions on it. In tlic

cases reported below the integers s have I)een calmrlatecl  by Hugo Wdhlquist using

a Monte Carlo program to expIore  the ranks of the nested, and so intcrrelatecl,  sets

of ostensibly linear  algebraic equations pcmcl by Cartan’s  thec)ry].  This mcthocl of

fincling ,s seems to he essential, as wc must work in a large number of dimensions,

and morwovcr there are 3-forn]s  and 4-forms in the ideals. An explicit cxan]plc  is

given in the Appendix.

The technique of prolongzition  leacls  to deep  analyses of the algcbr-aic  struc-

tures underlying a set of partial  differential equations, and to discovery of intrinsic,

or adapted, coordinates. rtO1lghly, prolongation is the addition of new forms to

an iclcal,  and the simultaneous consistent introduction of ncw variables. Cartim

used the term pr-cdcmgatioll  to mean introduction of higher  partial derivatives-

jet variables- -together with the equations relating them. We have used it also to

mean systematic introduction of non-local variables–--loosely, potentials ancl pscwdo-
potent ials--– and shown how this can lead to discovery of inverse scattering solutions,

B5cklund transforms and (if the ideal I contains only l-forms and 2-forms) c)thm

solution methods based on Kit-Moody algcljras. Prolongation also brirlgs  in the

possibility of gcmeralized  invariance generators of the partial differential equations
(or, as we have callecl tlmm, is(wec.tors  of tl]e ickmls). This is all admirably cliscussccl

by Dan Finley and J. K. MCIVCX  in a paper now in press3.

3. Ideals for Surfaces Immersed in E3

The construction shown in Figure 1. illustrates and explains the “method of

moving frames” approach to the classic suxfidce immcrsicm  problem that is found

in many elementary cliffcrential  geometry texts, Changing nc)tation to accorcl with

these, we first rewrite the structure cquatious  (1) for 1S(1(3), p, v = 1,2,3, setting
w~, w2, w3 ----+ 81,82,03 andu~,w~,w~ —-~ w ~71Jl,w*:

dg’--w3A 6tw2A83=(l(l

de2-w1A$3+w3A&dI

d63-a2A6]+w1A62==o

dw’+w2Aw3=0

dw2+w3Aw1==(l

CLJ3 + w’ AU* = O

3
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The immersion of a 2-surface is dmcribccl by annulling a single l-form 63 and

its closure, d03; that is, wc set the ideal I on 1S0(3) gc]lmated  by

One intuitively thinks of orienting a moving orthogonal frame, or triad, at each

point of the 2-surface, so that two frame  vectors lie in the surface. This intuition

is borne out by Cartan diagnostics of I: there is one Cauchy characteristic vector

(dual to W3, which dots nc)t appear in I), and 7i = 6,s = {1,1, 1}, g = 3. A solution

of I is thus a 3-dimcmsional  sub-bundle c)f 1S0(3) with l-dimensional fibers over a

2-dinlensional  base. From the structure equations, it is immediately semi that this

solution is an orthogonal frame  bundle over two dinlmlsions,  with curvature 2-fornl

R;=–2W:  AU:=9A1AW2. A cross section of it is a particular orthogonal frame——— ---- .——  —.. . .
field, or (anholonomic)  metric connection. According to the Cartan characters, each

such bundle can be constructed by Cauchy-Kowaleski  integration after giving one

arbitrary function of position on a suitable 2-surface.

O(2) bundle
dim 3

+ ISO(3)
dim 6

M *E3
dim 2 dim 3

Figure 1. : Surfaces M immersed in 133 have orthogonal frame bundles over them
that are sub-bulldles  of 1S0(3).



The diagnostic alters

ativc Gaussian curvature.

Now we fincl n = 6, s =

dramatically if wc specialize to surfaces of coustant ncg-

We now consider the (closed) icleal  I’ generatec]  by

*3

W’A82– W2A6’

w] Aw2+0’A~2 (4)

{1, 2, O} , g = 3, .sz = O! (This reduction of sz C1OCS @
happen if we specialize to other classes of surfaces, e.g. constant positive curva-

ture!) These constant curvature orthogonal frame bunches are uniquely constructed

aft er giving two arbitrary fmlct icms cm a g~ng climcmsional  submanifolcl (which must

itself only annul 03). This can be called  the discovery of a causal slicing of the

2- climcmsional  Ricnnannian  gccmwtry. Mathematically it allows us to go on and

specialize to adaptccl crc)ss scxticnls---  adaptccl  frames-. by systematically searching

for l-forms ( such that d< = O, mocl  (1’, [). Aclcling  in such a l-form will oIlly
change so. In the presexlt  case two

and Terng4, to “kill off’ the s2 = O

finally consider an augnwntecl  icleal

soluticms  exist; we use the same one as Cheru

while still leaving a well-set icleal.  That is, we

I“ gcnmatecl  by

CL)3 + Cot T W* + CSC T 62

w] A02–w2A61

W1ALJ2+d  A~2, (5)

where ~ is an arbitrary comtant.  Now n = 6, s = {2, 2}, g == 2.

We now can use both kinds  of prolcmgation  to find aclaptecl  coordinates. First,

remember Cartan’s Lemma, that if a set of l-forms w? satisfy we A Ui = O with

the Wi independent, then we may set w? -- ~$w]  = O, thereljy  introducing scalar
fielcls  4$ that must be symmetric on i and j. In the present case applying it to the

2-fcmn  in I“, requiring 191 ancl 02 to I>e indcqmndent,  introduces three scalars which

the second 2-form in I“ (for constant negative curvature) recluces to two. We get

Wl+j-qp+ 2 (32

ji-g j+~

2fg ho2
W2 + —..—gl —

j+~ f+- g
(6)

Adding these to the ideal I“ means  we can drop the original two 2-forn~s,  but at

the plice  of aclcling ill, for closure, the extericw  derivatives of (6) (which simply
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follow from the structure relations). l’he last step is thexl to search for Iicm-local

prc)longations,  in this case just conservation laws, by setting, e.g.,

u .. Au] + BlJ2 +- C91 + ~62 (7)

with the coefficicmts  functions of f and g, such that da = O, mod I“. Solutions

indeed are found:

d{fi+ fz (0’ +W1)}

[1{{1 –gz (01 –ol)} (8)

so we introduce “potential functions”, new scalar fields-–coordinates-- x WIC1 t by

Oxw can then solve  for all the original basis forms, u], w*, W3, 0], 02, explicitly in

terms of the scalar coordinates f, g, x al]d t and their differentials. The partial

differential equations that result from distilqguislliug  f a)ld g as de])enclellt  mld x

and t as independent variables, ill the structure 2-form equations, are the famous
pair of reciprocal sine-Gordon  equations originally fcmnd by Biicklunci by laborious

three  dimensional geometrical construction:

o(a +- ?j)— .—-- – asin(cr – @)
ax –

where

.a(ck – ?/))- .—. —.—— -.
at “ a–l sin(a  -1 @)

a = Cos 7- — cot 7-

f = tan(7/)  + a)

g = tan(?/)  – a)

(lo)

(11)

4. Ricci-flat Four Spaces Immersed in E,.

We begin by dividing the basis forms in Eq. (1) into two sets, i, j., etc. =

1,2,3,4 and A, D, etc. = 5,6,  7, S, 9, 10. The structure e[{uatic)lls  thell become

dWi+W~A Wk+W~ALiJA=O

diJA+W~A W1i+W~AW’=ZO

dL@w;  Awf4-w~Aw;  =O Gauss

du~+uf’Au~4-w~Aiwf~=O Ricci

dU~~-w~Aw;+w~;Aw~=O Codazzi (12)
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where  wc have indicated the famcms  names conventionally appliecl  WINNI  these are

pulled back to an immersed 4-manifold. The immersion is determined by the C1OSCC1
exterior differential ideal I:

k)’
u: A w’ (13)

There are 21 Cauchy characteristic vectors (sillcc  w; and w: are not explicitly

in I), and s is calculated to be {6,6,6,6,6, O...}, n == 55, g = 25. Wc have 25

di]ncnsional solutions, each a sub-bundle of 21 dimensional 0(4)@ 0(6) fibers over

a 4-clinmnsional  base.

A cross section of this so-called “Darboux “ bunclle yields not only an orthog-

onal frame field 011 4-space, I>llt also 15 allxiliary 0(6) fields that arise from tile

immersion, These auxiliary 0(6) fields (or 0(5, 1), 0(4, 2) or 0(3, 3); wc have not
had to be specific about signature) may prove to be a-s useful as those introduced

in other formulations, f[n example, by ctnnplcxifying  orthogonal frame tmndlcs.  In

tcnns  of them, the R.iemal]n  tensor  induced on the integral  manifolds is cluadratic,

It may be significant that 0(4,2) is isomorphic to the couformal  group CO(3, 1),

and occurs in twistor analyses. Only in our first example, two climensions  immersed

ill three, did the Darbcmx  buxldle  structure degenerate to that of an O(2) frame
bm;dle, without auxiliary fields.

The most gratifying discovery Wahlquist and I have made is that, when we go

on to consider Rice.i-flat and rclatcxl  geometries, Cartan character analysis shows

tllc Darboux  bmldles t o  be “causally” determined from data 011 slices of lower

dimension, here three. Wl]ile this Cauc.hy  property for general relativity is of course

well known since Worli by Liclmerowicz, Choquet-Bruhat  and ADM, here it emerges
very elegantly ancl naturally, giving us conviction that the Darboux  variables are

especially well adapted to the algebraic structllrc of the field equations.

The Riemann curvat me 2-forms can be read off from the Gauss struct m-e equa-

tions in Eq.(12)

I{; == - ~w~ A W; ( 1 4 )

The Ricci  tensor is COdd ill the 3-forl~~s R; A U~ ~:jk/, The immersion ideal  I’ for

Ricci-flat  4-geon~ctries  is

(15)
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Cartan diagnostics of I’ gives s = {6,6, 10,8, O...}, so solutions are determined
by setting 8 functions 011 three climensiona]  slices. This is shown in Figure 2.

Each such construction, of a bundle with 21 dimensional fibers  over 4-space, is

simultaneously 22 dimensicms over three. Causality emerges together with an au-

tonomous time variable. Similar analyses yield this causal structure for immersions

of Einstein-Maxwell and Eixlsteixl-I<leil~  -Gorclc)xl  solutions, ancl for Ricci-flat  three

and five climensiona.1  geometries (immersecl  ill six ancl fifteen climensional  flat spaces,

rcspectivelyl  ).

N ——— +0(4)80(6) bundle Iso(lo)
dim 3 dim 25 dim 55

\
\
\
\
\ 0(4)C3(6)  fiber
\
\
\
\
\
\
\
\
\
\T

M
dim 4

dim 21

/ %0
dim 10

Figure 2. : Riemannian  4-geometries M immersecl  in EIO have Darboux  frame

bullclles  0(4)@ 0(6) over them that are sul~-bundles  of 1S0( 10). In the R.icci-flat

case a C-K construction ad(litional]y gives M the structure of an 0( 1 ) or line Luxldle

over three dimensions (dashed arrows).

We are making progress in fil~dil]g  augmented icleals,  with specialized frames,

in a program analogous to that of Section 3 leacling to adapted coordinates and

the sine-Gorclon equation. A first step has been to incorporate maximal slicing, a

technique well known in nmnmical relativity. This proves to be nicely compatible

with the causal structure already present. That is, we have rccelltly analyzed the
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ideal  I“ genm-atcd  by

w’

w: A w’

ancl find that S4 remains mm: s = {6,6, 11,10, 0,,,.  },9 = 22. This appears to he a

neat demonstration of the (local) cxistcllce  and unic]uencss of maximal slicing. We

I1OW haVe 0(3) @ O(6)  blllldh OV~l 4- SpU:C!. Further  spccializaticm of the framing,

and use of prolongation may yield exlJlicit,  adapted, variables and coordinates.
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Appendix

Monte Carlo calculation of Cartan characters:
using the maximal-slicing, Ricci-flat ideal as an example

Hugo D. Wahlquist

Jet Propulsion Laboratory

California Institute of Technology

Pasadena, CA 91109,  USA

The computation of Cartan characters used throughout

closely the exposition given in Estabrcmk and Wahlquistl.

this work follows very

Here we describe the

numerical method and clisplay  some typical results obtainecl for the maximal slicing

ideal, Eq. (16).

The 55 basis l-forms of 1S0(10), {uI’, u~},  (p, v = 1,..., 10), are re-labeled

into a l-dimensional array, bi (i = I , . . . . 55), clenotecl  13i in the computer printout,

Figure 3. The ordering of the basis forms is arbitrary, but can be (and here has

been) chosen so as to optimize the computations. The set of forms for any of these
immersion ideals can then be written uniformly as

1  –  fOmllS  : OA  =  jl~bi .4=1 ,..., N1

2- forms : /lB = jjbi A b) B=l ,..., N2

3 – forms : ~c: = j,~~hi  A ~ A b~ C=l ,...,lv~

etc. A(1)

where the coefficients j of every form are small integers. The icieal in Eq. ( 16)

translates to the set of forms in Figure 4. The set of vectors spanning an integral

element of the solution manifold is expressed as VK = ~~bi where the subscript K

labels the vectors in the set and hi are the dual basis vectors satisfying bi] b] = 6:.

Many such sets can be found at a point, and in principle, each would lead to a

locally analytic solution manifold by Caucl~y-Kowaleski integrations. We are here

interested only in generic solutions for which the basis forms u~ (p = 1,.2,3,4) of

an immersed 4-space remain Iine=ly independent. Consequently we demand that
the first four vectors of a set must span (be non-clege:lerate on) this sub-space. If

the ideal of forms allows such a set, the ideal  is said by Cartan to be “involuntary”
with respect to these d’.

10



‘MAXIMAL’ BASIS 1 -FORMS

B1 = W 5 B21 = W(3,7) 641 = W(5,10)
62 = W6 B22 = W(3,8) B42 = W(6,7)
B3 = w? BZ3 = W(3,9) B43 = W(6,8)
B4 = W8 B24 = W(3,1 O) B44 = W(6,9)
B5 = W 9 BZS = W(4,5) 645 = W(6,1O)
B6=W1O B26 = W(4,6) B46 = W(7,8)
67 = W(l,S) B27 = W(4,7) B47 = W(7,9)
B8 = W(1,6) BZ8 = W(4,8) 648 = W(7,1 O)
69= W(1,7) 629 = W(4,9) B49 = W(8,9)
610 = W(1,8) 630 = W(4,1 O) B50 = w(8,1O)
Bll =W(1,9) 631 = W(1,4) 6S1 = W(9,1O)
612 = W(l,IO) 632 = W(2,4) 652 = W 4
613 = W(2,5) 633 = W(3,4) B53 = W 3
B14 = W(2,6) B34 = W(1,2) 654 = W2
B1 S = W(2,7) 635= W(1,3) B55 = W1

616 = W(2,8) 636 = W(2,3)
B17 = W(2,9) 637 = W(5,6)
B18 = W(2,1O) 638 = W(5,7)
B19 = W(3,5) 639 = W(5,8)
620 = W(3,6) 640 = W(5,9)

Figure 3. : I.abcls of basis forms for the ideal Mazinml.

The l-forms cr~ are initially Xallli~(l tc) detcmnine  the first Cartan character SO,

giving the number of illdependent l-forms. If the aA as given are independent, then

so = J’V1.  All ranking is accomplished by straightforward Gaussian elimination, so

after ranking, the coefficient matrix ~,~ acquires upper triangular form; i.e., ~,A = O

for i < A. The actual calculations proc.cd  using integer arithmetic to avoid any

possible problems with numerical precision. The price paid for this is the rapid

growth in the magnitudes of vector components, especially in large ideals including

higher degree fornls. The growth is minimized as far as possible hy continually

reciuc.ing over conm~on factors, but this dcms not eliminate the problem for ideals

M large as the maximal slicing ‘ideal, even with 32-l>it integers. The calculations

often exceed this limit before a ccunplcte  solution is reached.  HaviI~g  to repeat the

calculation anew when this happens is not serious, however. Since each solution

requires only a few seconds on a desktop computer, hulldrcxls  of complete solutions
actually can be ohtainecl  in a couple of hours.
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THIS IS THE IDEAL: ‘MAXIMAL’

THE DIMENSION IS 55 .

THERE ARE 6 l-FORMS IN THE IDEAL:

#l=+Bl

#2=+B2

#3=+B3

#4=+B4

#5=+B5

#6=+B6

THERE ARE 6 2-FORMS IN THE IDEAL:

# 1 = + B7AB55 +B13AB54+B19AB53 + B25AB52

# 2 = + B8AB55 + B14AB54 + B20AB53 + B26AB52

# 3 = + B9AB55 + B15ABS4 + B21AB53  + B27AB52

# 4 = + B1OAB55 +B16AB54 + B22AB53  + B28AB52

# 5 = +B1lABSS +B17AB54+  B23AB53+B29AB52

# 6 = +B12AB55+ B18AB54+ B24AB53+B30AB52

THERE ARE 5 3-FORMS IN THE IDEAL:

# 1 = +B7AB13AB53  +B13AB19AB5S  +B19AB7AB54  +B@Bl~BS3+  Bl@WWB55+B2W~BS4
+ B9AB1 5AB53 + B15AB21 AB55 + B21 AB9AB54 + B1OAB16AB53 + B16AB22AB55 + 822ABI 0AB54
+B1lAB17AB53 + 617AB23AB55 +B23AB11AB54 + B12AB18AB53 + B18AB24AB55  + B24AB12N!54

# 2 = +B7AB13AB5Z  +B13AB25AB55  +B25AB7AB54  +B@Bl&B52+  Bl~U6AB55+  B26ABWB54
+ B9AB15AB52 + B15AB27AB55 + B27AB9AB54  + B1 mBl 6AB52  + B16A&@B55 + f328ABl 0AB54
+ B1 1AB17AB52 + 617AB29AB.55 + B29AB11AB54 + B1 ZA131BAB5z  + B18AB3@B55 + B30AB12AB54

# 3 = +B7AB19AB52  +B19AB25AB55  +B25AB7AB53  +BWB2WB52+  B2WB2@BS5+ B26AB~B53
+ B9AB21 AB52 + B21 AB27AB55  + B27AB9AB53 + B10AB22AB52 + B22AB28AB55  + B28.AB10AB53
+ B1 1 AB23AB52 + B23AB29AB55 + B29AB11 AB53 + B12AB24AB52 + B24AB30AB55  +B30AB12AB53

# 4 = +B13AB19AB52  +B19AB25AB54  +B25AB13AB53  +B14A820AB52  +B2W@6ABM  +B26ABl*B53
+ B1 5AB21 AB52 + B21 AB27AB54  + B27AB15AB53 + B16AB22AB52 + B22AB28AB54  + B28AB16AB53
+ BI 7JW23AB52 + B23AB29AB54 + B29AB17AB53 + B18AB24AB52 + B24AB30ABS4 + B30AB18AB53

# 5 = +B31AB55AB52  +B32AB54AB52  +B33AB53AB52

THERE ARE 2 4-FORMS IN THE IDEAL:

# 1 * +B31AB54AB53AB52  -B32AB55A853AB52  +B33AB55AB54AB52

# 2 = +B31AB32AB55AB54  +B31AB33AB55AB53  +B32AB33AB54AB53

THERE ARE O 5-FORMS IN THE IDEAL:

Figure 4. : Theidcal  Mazin~alel]tered in the Monte Carlo progmm.
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A first auxiliary vector VI = v~lu is illitidly  introcllld with ~j l~~illgas~t  of

randomly chosen (small!) integers. ‘To bc an integral  elcnmnt,  scnne  components of

VI must  thfmlx  adjmted tO aunul the l - forms O’i

a set of equations which is easily solved in rcvcrsc order taking advantage of the

,A. Any components of VI which are not solved for retaintriangular structure of j

their randomly assignccl values. A uew set of l-forms cr~] is now generated by

contracting V1 on the ‘2-fornw /3[~

Here brackets around indices denote ccnnplete  axltisyl~lll~ctrizatiol~,  but. wit]lout the

usual 1/n! factor. The full set of 1 -forms {a~ , cr~ } is now rankecl to clctmmixie  the

second Cartan character (rauk = so + 51 ).

A scconcl  auxiliary vector V2, again taken  with initially random integer con~-

ponents (cxccpt  only for requiring linear  indcpendcmc.e  from VI), must annul the

augmented set of l-forms

which ensures that Vz is a l-dimcnlsional integral elmncnt  ancl VI and V2 together

span a 2-dinm]sional  integral element. Again, after  solving these equations any

componcmts of Vz unconstrained by the equations retain their randonl integer values.

Now V2 is usecl to gcncrat e ncw l-forms from the 2-fornls

ancl V1 am-l V2 are jc)intly applied tc) the 3-forms to generate

This entire set of l-forms, crA, a:, cr~, cr~2 is rankccl  to determine s2(rank = so +

s] + S2).

Proceecling in this way, each new initially random (but  independent) auxiliary

vector is required to annul all prior l-forms and then contracted, together with all

possible combinations of prior vectors, on the higher clcgrcc forms to generate licw

l-forms which are then ranked.

l-forms will be obtained with,

Finally, at some point no additional independent

S:ly, th(?  kt” auxiliary vector Vk, so s~ = O zmcl
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furthermore, all sl = O (J > k). If k s g = n – ~~j~ sj, t h e

there are at le& (g – k) Cauchy characteristics.

Clearly, the ranclom  values of unconstrained components

icleal is well-set

of the auxiliary

tors may lead to accidentzd  c~egelwracy  of the l-forms generated from them at

and

vec-
any

step, so that the rank of the l-forms is not maximal. Such accidents, however, are

relatively rare and are easily detectecl  by repeating the solution several times; the

maximal characters generally beccnne  readily apparent after a few repetitions. As

mentioned before, repetitive solutions can be quickly accomplished.

The results of a short sexies of 8 solutions for the Cartan characters of the

maximal slicing ideal are presented in Figure 5., and Figure 6. shows some of

the corresponding sets of auxiliary vectors, which were carriecl  through V6. Here

k = 4; i.e., Sq = O, and g = 55 – 33 == 22. Accorclingly, the vector V4 is completely

determined by the first three auxiliary vectors, and the vectors V~ and V6 are Cauchy

characteristics, of which there are 1S in all (note that the basis forms, B34 - B51,

do not appear in the ideal).

‘MAXIMAL’ RESLJLTS

QM is approximately the largest integer encountered during a solution attempt.
IV is the number of invoiutory  vectors ( if a desired number was specified at the start ).

1 QM = 5123392
S={6,6,11,10,  0,0, O  , } I V - 6

2 QM = 1.50427200
S={6,6,11,10,  0,0, O  , } IV= 6

3 QM = 4822910
S - { 6 , 6 , 1 1 , 1 0  , 0 , 0 , 0 , } IV=6

4 QM = 78791376
S={6,6,11,10,  0,0, O ,} IV= 6

5 QM = 62895S225
S = { 6 , 6 ,  1 1 , 1  O ,  O ,  O ,  O , } lV=6

6 QM = 4S630
S - { 6 , 6 , 1 1 , 1 0 ,  0 , 0 ,  O  , } IV=6

7 QM = 274468500
S={6,6, 1 1 , 1  O ,  O ,  O ,  O , } IV=  6

8 QM = 6748 S7656
S={6,6,11,10,  0,0, O ,} IV=6

HIS IS ALL! TOTAL AITEMPTS = 37

Figure 5. : Eight solutions found by the. Monte Carlo program.
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NON-ZERO COMPONENTS OF VECTORS IN ‘MAXIMAL’ SOLUTION #1
I 1

11:v7 --1 ,v9- 1 ,v10 - 1 ,vll - 1 ,v13  --I ,v15- 1 ,v16- 1 ,v17  --1
V19-  1 ,v20- 1 ,v21- 1 ,v22 - - 1  ,v23  - - 1  ,v24- 1 ,v2S  - 1 ,v26- 1
v27 --1 ,v29- 1 ,v32--2, v33 - - 1  ,v52- 1 ,v55- 1

r2v7--2, v8- 2,v9 - - 1  ,vl l - - 1  ,v12  - - 1  ,v13- 1 ,v14- 1 ,v15 --1

v16- 1 ,v17- 1  ,v18 - - 1  ,v19- 1  ,v22- 1  ,v23- 1  ,v25- 2,v26 - - 1
v27- 1 ,v28- 1 ,v29- 1 ,v30- 1 ,v31- 1 ,v32 --1 ,v52- 1 ,v54- 1

r3:v7--9,  v8- 9,v9- 3 , v 1 o - - 3  ,v11--3, v13--6,  vlS - 6,v16- 6
V17- 3 , v 1 9 - 1 7  ,v20- 30, v21- 33 ,v22  --3 ,v23--3, v25- 1 5
v26 --3 , v27 --3 ,v29- 3 ,v30- 3,v31- 9,v32- 3,v33--3, vS2- 3
VS3 - 3

V4:V7--15O6  ,v8- 1 3 1 1 ,v9--862 ,v10 - 1902 ,vl l--1428 ,v12- 6 2 6
v13 --792 ,v14  --117 ,v15- S66 ,v16- 2616 ,v17  --1428 ,v18- 1 3 4 0
v19- 1350 ,v20  --117 ,v21 --862 ,v22- 1902 ,v23  --1428 ,v24- 1 3 4 0
v25 - 2220 , v26 - - 5 9 7  ,v27= 148 ,v28--19O2 ,v29- 2142 ,v30  - - 6 2 6
v31 - 1190 ,v32  --952 ,v33  --1666 ,v52- 714

]VS:V51  - 1 I

NON-ZERO COMPONENTS OF VECTORS IN ‘ MAXIMAL’ SOLUTION #3
I I
V1:V7  - -1  ,v8- 1  , v 1 0  - - 1  ,vl l - - 1  ,v12 - -1  ,v15- 1 ,v17- 2,v18- 1

v19- 1 ,v20- 1 ,v21 - - 1  ,v22--2,  v23- 1 ,v24 - - 1  ,v25  - - 1  ,v27- 1
v28- 3 , v29 --2 ,V30-  1 ,v31 - ’ 1  ,v32  - - 1  ,v33- 1  ,v52- 1  ,v55- 1

I2:v7--2, v8- 1  ,v9- 1  , v 1 0  -  2,v11 - - 1  ,v12- 3,v13- 1  ,v15- 1
V17 --1 ,v18- 1 ,v19 - - 1  ,v20- 1 ,v21 - - 1  ,v22- 1  , v 2 3 - 1 ,v24- 1
v25 - 1 ,v26  - - 1  ,v27- 1 ,v28- 1 ,v29- 1 ,v30 - - 1  ,v31 - - 1  ,v32 - - 1
V33- 2,v52- 1  ,V54- 1

r3: V7 - 1  ,v8-4, v9- 2,v13- 1 ,v14--2, vlS - 2,v16--2, v17 - - 6
v19 --36 ,v20 - - 3 5  ,v21- 5 ,v22--2, v23 - - 2  ,v24- 2,v25 - - 1  ,v26- 2
v27 --2 , v28 --2 ,v29- 2,v32--2,  v33--2,  v52 --2,  v53 - - 2

V4:V7-  2942 ,v8--35OO  ,v9 --4436 ,v10 - 3154 ,v1l --2920 ,v12- 45
v13- 1694 ,v14 --2876 ,v15  - -4436 ,v16- 4402 ,v17  -4792 ,v18- 1 2 9 3
v19 - 2006 , v20 --2876 , v21 - 4436 , v22 - 4402 , v23 - -3544 , v24 w 669
v2S --2318 ,v26- 3500 ,v27- 3812 ,v28--5O26 ,v29- 4168 ,v30 - - 6 6 9
v33 --624 , v52 --624

I5:V51 --1 Ir6: vSO  --1

Figure G. : Explicit vector  components of four solutions.
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NON-ZERO COMPONENTS OF VECTORS IN ‘ MAXIMAL’ SOLUTION #S

‘1: V7 --1 ,V8 --1 ,V8 - - l ,Vlo - - l  , v l l - 1  ,V12 - -1  ,V13- 1 ,Vls - - l
v16--2, v17 - - 1  ,v18 - - 1  ,v19 --1 ,v20- 1 ,v23  - - 1  ,v24- 1 ,v25  --1
v26 --1 , v27 --1 , V28 --1 ,v29- 1 ,v30- 1 ,v32- 1  , v S 2 - 1 ,V55- 1

‘2:v7 --1 ,v8--2,  v9 - - 1  , V 1 0 - - 2 ,  V 1 2 -  1  ,V13 --1 ,V14- 1 ,Vls --l
v16 --1 ,v18  --1 ,V19 --1 ,v20- 1  ,v21- 1 ,v22 - -1  ,v24 - -1  ,v25- 1
v26 - 1 , v27 - -1 , v28- -1 , V30 --1 ,V31 --1 ,v32- 1 ,v33- 1  ,v52- 1
V54 - 1

‘3: V7 --1 ,v8- 4 ,v10 --8 ,vl l - - 8  ,v12- 1 2 ,  v13- 7,v14- 1 2 ,  v1S=  4
v16--l2 ,v17 --8 ,v18-4 ,V19-4 ,v20- 2 0 ,  v21--19, v22 - - I ,  v23-4
V2S - -7 ,v26  -AI ,v27 --I ,v28- 4,v29- 8 , v 3 0 - 4 ,  v 3 1 - - 1 6 ,  v 3 2  --4
V33 - 4 ,VS2- 4 ,VS3- 4

‘4; v7- 2761 ,v8- 2073 ,v9 --17 ,v10 --147 ,vll - 4262  ,v12- 2220
v13- 2217 ,v14- 1S29 ,vI S--17 ,v16 --147 ,v17- 4S34 ,v18- 2764
v19- 296S , v20- 2073 , v21 --17 , v22 --691 , v23 - 3990 , v24- 2764
v2S --2489 , v26 --1801 , v27 - 289 , v28 - 419 , v29 - 4S34 , v30 --2492
V31 - S44 , V33 --544 , vS2 - -272

‘S: V51- 1

‘6: v50 = 1

NON-ZERO COMPONENTS OF VECTORS IN ‘ MAXIMAL’ SOLUTION #7

V1:V8-  1 , v 1 0  - - 1  ,vll - 1 ,v12 - -1  ,v13  - -1  ,v14 - -1  ,vIS - 1 ,v16- 1
V17 --I ,v18- 1 ,v19- 1 ,v24- 1 ,v26- 1 ,v27  - - 1  ,v28 - - 1  ,v29  - - 2
V30 --1 ,v32- 1 ,v33  --1 ,vS2- 1 ,v5S - 1

V2:V7--2,  V8 - - 1  , v 1 0  - - 1  ,vl l - -3  ,v12- 1 ,v13- 1 ,v14- 1 ,vIS - 1
v16 --1 ,V17 --1 ,V20- 1 ,v21- 1 ,v22 - -1  ,v23 - -1  ,v24 - -1  ,v2S - 1
v26 - 1 ,v28- 1 ,v30  - -1  ,v31--2,  v32- 1 ,v33  - - I  , v S 2 - 1 ,VS4- 1

V3:V7-  lS, V8- 2 4 ,  v i i -  1 8 ,  v12- 6,v13- lS, V14--6,  VIS -  1 2
v16 --6 ,v17- 1 2 ,  v18- 1 8 ,  v19- 2 3  ,v20--24,  v21- 1 6 ,  v22- 6
v23--6,  v24- 6,v2S - - 2 1  , v 2 6 - - 6 ,  v 2 7 - - 1 8 ,  v 2 8 -  6,v29--6,  v30 - - 6
v31- 18,  v33--6, vS2--6, VS3 - - 6

V4V7 --2778 ,v8- 6682 ,v9 --33684 ,v10 - 28188 ,v1l --3715 ,v12--961S
v13 --942 ,v14- 6682 ,vI S- -31848 ,v16- 31860 ,v17 -43 ,v18--961S
v19 = 3648 , v20 - 6682 , v21 = -26340 , v22 - 28188 , v23 - 1793 , v24 --5943
v2S = 2778 , v26 -4846 , v27 - 31848 , v28 --30024 , v29 - 43 , v30 - 7779
v31 --1836 , v32 - 3672 , v33 - 1836 , 62- 1836

V5: V51 --1

V6: vSO --1

Figure 6. : (Continued)
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